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ABSTRACT

Land–atmosphere feedbacks occurring on daily to weekly time scales can magnify the intensity and duration of

extreme weather events, such as droughts, heat waves, and convective storms. For such feedbacks to occur, the

coupled land–atmosphere system must exhibit sufficient memory of soil moisture anomalies associated with the

extreme event. The soil moisture autocorrelation e-folding time scale has been used previously to estimate soil

moisture memory. However, the theoretical basis for this metric (i.e., that the land water budget is reasonably ap-

proximatedbya rednoiseprocess) doesnot apply at finer spatial and temporal resolutions relevant tomodern satellite

observations and models. In this study, two memory time scale metrics are introduced that are relevant to modern

satellite observations andmodels: the ‘‘long-termmemory’’ tL and the ‘‘short-termmemory’’ tS. Short- and long-term

surface soil moisture (SSM) memory time scales are spatially anticorrelated at global scales in both a model and

satellite observations, suggesting hot spots of land–atmosphere couplingwill be located indifferent regions, depending

on the time scale of the feedback. Furthermore, the spatial anticorrelation between tS and tL demonstrates the

importance of characterizing these memory time scales separately, rather than mixing them as in previous studies.

1. Introduction

Land–atmosphere feedbacks occurring on daily to

weekly time scales play a crucial role in the timing and

severity of extreme events, including droughts, heat waves

(Miralles et al. 2014; Roundy et al. 2014, 2013), and con-

vective storms (Findell and Eltahir 2003a,b; Gentine et al.

2013; Guillod et al. 2015). For example, a precipitation

event can lead to increased soilmoisture, which can lead to

increased evapotranspiration and, ultimately, the devel-

opment of clouds and further precipitation (Seneviratne

et al. 2010). Properly representing these feedbacks in

models is a long-standing challenge since they are emer-

gent features of coupled physical processes (including

evapotranspiration and the surface energy balance,

boundary layer growth and decay, and deep convection)

that are parameterized, rather than resolved, by most

models. The absence of such feedbacks in models com-

promises their skill in predicting extreme events. Their

absence may also contribute to model deficiencies at the

land surface: for example, the observed rapid-onset warm

bias in surface temperatures that appears in most weather

and climate models over midlatitude inland continental

regions (Klein et al. 2006; Ma et al. 2018, 2014; Morcrette

et al. 2018). As such, characterizing land–atmosphere

feedbacks with observations is a key priority for ad-

dressing model deficiencies at the land–atmosphere

interface (Santanello et al. 2018).

The coupled systemmust exhibit sufficient ‘‘memory’’

for these feedbacks to occur. For example, if additional
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moisture from a precipitation event rapidly drains out

of a soil volume into deeper reservoirs, then there is no

time for themoisture to be evaporated or transpired into

the atmosphere or influence the surface energy balance,

and the feedback loop cannot occur. More specifically,

the memory of the soil moisture storage is defined as the

time taken to dissipate an anomaly, where an anomaly is

typically defined as a deviation from some climatologi-

cal reference value. There are substantial differences in

estimated soil moisture memory across models (Koster

and Suarez 2001; Seneviratne et al. 2006; Seneviratne

and Koster 2012), suggesting model-based estimates are

highly uncertain.

Most previous studies estimate soil moisture memory

using a metric based on the autocorrelation of the soil

moisture time series. Delworth and Manabe (1989,

1988) first proposed this metric by noting that, at large

temporal and spatial scales, soil moisture time series

can be reasonably represented as a red noise process.

To justify this model, they first noted that the verti-

cally integrated land water anomaly budget for a

planar homogeneous soil volume is

Dz
du0(t)
dt

5P0(t)2L0(t)5P0(t)2ET0(t)2Q0(t) , (1)

where Dz is the depth of the hydrologically active soil

control volume, u is the volumetric soil moisture, P is

precipitation, ET is evapotranspiration, Q is drainage

and runoff, L5ET1Q is the ‘‘loss function,’’ and

primed quantities are anomalies [e.g., u0(t)5 u(t)2 u,

where u is the time average soil moisture; and similarly

for P0, ET0, Q0, and L0]. Assuming that 1) P0 can be

represented as a white noise process; 2) ET0 can be ap-

proximated as a linear function of soil moisture; and 3)

Q0 can be neglected when considering the entire soil

column over large scales relevant to climate models, the

land water anomaly budget can be rewritten as

du(t)

dt
52

u(t)2 u

T
1 «(t) , (2)

where T is a fixed parameter that is a function of Dz
and the sensitivity of ET0 to soil moisture, and «(t) is

an independent and identically distributed random

variable with a mean of zero. This expression is the

definition of a red noise process. The e-folding auto-

correlation time scale of a red noise process is simply T,

which Delworth and Manabe (1989, 1988) first pro-

posed as a useful time scale of soil moisture memory

when applied to monthly model outputs and has since

been widely adopted (e.g., Dirmeyer et al. 2016;

Dirmeyer and Norton 2018; Entin et al. 2000; Vinnikov

and Yeserkepova 1991). Since then, other memory

metrics based on the autocorrelation function have

also been employed, including the integral time scale

(e.g., Ghannam et al. 2016; Katul et al. 2007), the

autocorrelation for a fixed time lag (e.g., Koster and

Suarez 2001; Seneviratne et al. 2006), and the soil mois-

ture variance spectrum (e.g., Katul et al. 2007; Nakai et al.

2014). All of these measures of soil moisture memory

relate back to a model of soil moisture as a stochastic, red

noise process [Eq. (2)].

However, this model was designed for coarse

temporal and spatial scales and breaks down at finer

resolutions relevant to newer models and satellite ob-

servations. As an illustration of this problem (which

focuses on fine temporal rather than spatial scales), we

use synthetic soil moisture ‘‘observations’’—generated

from a simple water balance model with prescribed loss

function and forced with stochastic precipitation [de-

scribed in appendix B, and similar to, e.g., Laio et al.

(2001) and Feng et al. (2014)]—to examine the impact

of temporal averaging on estimates of memory time

scales. The prescribed loss function (Figs. 1a–d, solid

black line) has a standard form, comprising a regime in

which drainage dominates for high soil saturation

s5 u/n (n is soil porosity) where the loss function

follows a power law with soil moisture; a stage-I ET

regime for intermediate values of s, in which the loss

function is invariant with soil moisture; and a stage-II

ET regime for low s, in which the loss function is linear

with soil moisture. The soil moisture outputs are av-

eraged in blocks of length Dt days. Precipitation is

similarly accumulated. Losses at temporal resolution

Dt are then estimated by subtracting changes in aver-

aged soil moisture (at time scale Dt) from precipitation

(accumulated at time scale Dt) and compared with the

‘‘true’’ instantaneous loss function used to generate the

synthetic soil moisture. For Dt5 30 days (Figs. 1b,d),

the estimated loss function is substantially different

compared to the instantaneous loss function for all soil

moisture values, caused by averaging to coarser time

scales. It is represented reasonably by a linear function

(gray dashed line) with substantial additive random

noise; in other words, it can be reasonably modeled

stochastically—as a red noise process [Eq. (2)]—at a

temporal resolution of Dt5 30. This is similar to the for-

mulation for rapid surface runoff used in a simple water

balancemodel proposed in previous studies (Koster 2015;

Koster and Milly 1997; Koster and Mahanama 2012).

In contrast, forDt5 3 days, the estimated loss function

fits the instantaneous loss function very well for drier

soil moisture values. This is because more variability

is resolved by the soil moisture time series at a tem-

poral scale of Dt5 3 days (Figs. 1a,c) compared to

Dt5 30 days. Therefore, a deterministic loss model
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appears most appropriate for dry conditions. How-

ever, at higher soil moisture values, the estimated loss

function differs substantially compared to the in-

stantaneous loss function. These losses are larger and

occur more rapidly compared to those at lower soil

moisture values, and are not resolved by the soil

moisture time series even at Dt5 3 days. The scatter

suggests a stochastic loss model (perhaps similar to

the red noise model) is more appropriate under wet

conditions. Overall, a model of the loss function that

is purely deterministic or purely stochastic (like the

red noise model) will be inadequate at this temporal

resolution.

This is a common problem across disciplines in cli-

mate modeling: a parameterization designed for a

coarse temporal or spatial scale may not translate well

to finer temporal or spatial scales that become feasible

to model or observe as computational resources and

satellite observation resolutions increase with time

[e.g., Wyngaard (2004) describes a conceptually anal-

ogous modeling problem in atmospheric science]. Why

does this occur? In the original work on soil moisture

memory by Delworth and Manabe (1989, 1988), soil

moisture drydowns—common features of any soil

moisture time series, in which the soil moisture decays

quasi-exponentially following a precipitation event

(Fig. 2a)—typically occurred on time scales much

shorter than the model’s (coarse) output frequency;

that is, the drydowns were not resolved in the model

output (Fig. 2c). This justified their treatment as sto-

chastic fluctuations around a more slowly varying

mean soil moisture state; that is, the application of the

red noise model [Eq. (2)]. However, as model resolu-

tions have increased and satellite observations have

become available, drydowns have become at least

partially resolved in both standard model outputs and

in global observations (Fig. 2b). To borrow terminol-

ogy from the atmospheric boundary layer community,

our models and satellite observations of soil moisture

are in the resolution ‘‘gray zone’’ (e.g., Honnert 2016),

which we define here as time scales of days to weeks,

and spatial scales fromO(1) toO(10) km. Treating soil

moisture drydowns as stochastic fluctuations is no

longer justified; yet, since they are not fully resolved

FIG. 1. (a) Instantaneous loss function L(s) estimated from synthetic soil saturation obser-

vations s5 u/n, where n is soil porosity. The synthetic soil moisture time series were generated

using a prescribed loss function (black solid line). After averaging the synthetic soil moisture

to a temporal resolutionDt5 3 days, the estimated losses (crosses) are partitioned based on the

occurrence of precipitation. For P 5 0, the estimated losses (red crosses) reasonably match

the true lossL(s), i.e., the loss function is ‘‘resolved’’ by the observations at Dt5 3 when P5 0.

The long-term memory tL is inversely proportional to the slope of the loss function in this

resolved range. For P . 0, the estimated losses (blue crosses) deviate substantially from L(s),

i.e., the loss function is not resolved by the observations at Dt5 3 when P. 0. The short-term

memory tS is inversely proportional to the slope of the (gray dashed) line fit to the estimated

losses for which P . 0 (blue crosses). (b) As in (a), but with Dt5 30 days. (c) As in (a), but

different y-axis limits. (d) As in (b), but different y-axis limits.
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(and will not be in global satellite observations for the

foreseeable future), they can be treated as, at best,

only partially deterministic.

In this study, we introduce a hybrid model of soil

moisture memory that can be applied in the gray zone.

Our model builds on the red noise model of soil

moisture memory [Eq. (2)]. It replaces the one pa-

rameter of the red noise model (T, the e-folding au-

tocorrelation time scale) with two parameters: the

‘‘short-term memory’’ tS and the ‘‘long-term mem-

ory’’ tL. The details of the hybrid model are presented

in section 2. Quantities related to tS and tL have been

estimated in recent studies (McColl et al. 2017a,b;

Shellito et al. 2018, 2016). However, while these

quantities have been analyzed individually, they have

not been analyzed jointly. For example, the relation

between short-term and long-term memory is unclear:

do regions with significant short-term memory also

tend to have significant long-term memory? Further-

more, most previous studies have focused on satellite

observations. It is unclear how models perform in this

respect, and the extent of disagreement with satellite

observations. In response to these knowledge gaps, in

this paper, we perform a joint analysis of both memory

time scales, using both satellite observations and a

land surface model. The three main contributions of

this study are in 1) reconceptualizing soil moisture

memory, moving away from a stochastic model that

fails at fine spatial and temporal scales, to a hybrid

model that is more appropriate to the gray zone, and

breaks memory down into short-term and long-term

components; 2) comparing estimates of short-term

and long-term memory and analyzing their relation

globally; and 3) contrasting with estimates from a

global land surface model. From this joint analysis, we

find that 1) the model examined in this study tends to

overestimate long-term memory and underestimate

short-termmemory of surface soil moisture relative to

satellite observations and 2) regions with relatively

long short-term memory tend to have relatively short

long-term memory, and vice versa, in both the model

and satellite observations.

This paper is structured as follows. In section 2, we

introduce the hybrid soil moisture memory model, de-

scribe procedures for robustly estimating tS and tL from

model outputs and satellite observations, and describe

the datasets used in this study. In section 3, we present

and discuss the results of our analyses: comparing global

estimates of tS and tL from a model and satellite ob-

servations and analyzing their correlation in space.

Conclusions are summarized in section 4.

2. Methods and data

In this section, we present the hybrid soil moisture

memory model and procedures for estimating tS and tL
from soil moisture time series and describe the soil

moisture and precipitation datasets used in this study.

Building on the stochastic red noise model of soil

moisture memory, we propose a hybrid stochastic–

deterministic model, designed for the gray zone. The

hybrid model includes a deterministic component un-

der dry conditions, and a stochastic component under wet

conditions. To separate the deterministic component

FIG. 2. (a) Soil moisture drydowns can be approximated with two decay time scales: a rapid

drainage time scale (the short-term memory tS), and a slower ET time scale (the long-term

memory tL). For sufficiently high sampling frequencies, both time scales can be estimated

from the soil moisture time series. (b) For sampling frequencies typical of modern satellite

observations, only the later stages of the drydown (governed by tL) are resolved. (c) In older

models, at temporal scales of weeks to months, most drydowns are not resolved.
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from the stochastic component, we condition on the

occurrence of precipitation. Losses estimated in time

blocks (i.e., an interval [t2Dt, t], where t is time and Dt is
the temporal resolution of model outputs or satellite ob-

servations) where precipitation occurred are assumed to

be generated by the stochastic component; losses esti-

mated in time blockswhere precipitation did not occur are

assumed to be generated by the deterministic component.

This partitioning separates the two components well in

our simulation (Figs. 1a–d). The model can be written as

du(t)

dt
5

8>>>><
>>>>:
2
u(t)2 u

w

t
L

, if P5 0 in the interval [t2Dt, t],

2
u(t)2 u

t
S

1 «(t), if P. 0 in the interval [t2Dt, t],

(3)

where uw is a minimum soil moisture value, and u and «

have the same definitions as in Eq. (2). Here, tL is a

memory time scale controlled by stage-II ET that is

resolved by the observations; we call this the long-

term memory. In contrast, tS is a memory time scale

governed by a combination of unresolved processes,

particularly, but not exclusively, drainage (the vertical

flux of moisture out of the bottom of the soil moisture

control volume, deeper into the unsaturated zone); we

call this the short-term memory. Note that this model

of memory essentially reduces to the original red

noise model when applied to the Dt5 30 days obser-

vations since P . 0 for nearly all time blocks; in this

case, tS and T are equivalent. However, fitting a red

noise model to the Dt5 3 days observations would mix

the quite distinct time scales tL and tS, resulting in a

memory time scale estimate that is not representative

of either the resolved stage-II ET regime, nor the

unresolved regime.

The hybrid model [Eq. (3)] requires information on

precipitation occurrence (a binary variable). How-

ever, remotely sensed precipitation observations likely

have significantly larger errors compared to satellite soil

moisture observations. Therefore, to avoid introducing

a separate precipitation time series into the analysis, we

use positive increments in the surface soil moisture time

series as a proxy for precipitation occurrence. At small

scales (from point scales to field scales), positive incre-

ments in surface soil moisture can be caused by a variety

of mechanisms, including run-on, capillary rise, irriga-

tion, and precipitation events. At larger scales, however,

almost all positive increments in the surface soil mois-

ture time series are caused by precipitation events. As a

simplification, we assume that all positive increments in

the surface soil moisture time series are caused by pre-

cipitation events for models or observations of surface

soil moisture at large scales, while acknowledging that

this is an approximation that may not be strictly true in

all cases (McColl et al. 2017a).

a. Estimation of long-term memory tL

We first explain the estimation of tL, which follows

the samemethod asMcColl et al. (2017b), and is briefly

summarized. Drydowns are identified in the soil mois-

ture time series as periods in which the change in soil

moisture is consistently negative. To mitigate against

noise in the soil moisture time series, the length of the

drydown and the size of increments must be greater

than prescribed thresholds (in this study, the drydown

must be based on at least three observations, and the

increment must be at least 10% of the observed range

of the soil moisture time series). The governing equa-

tion for each identified drydown corresponds to the

case where P5 0 in the hybrid model [Eq. (3)]. This

equation can be solved to give the relation:

u(t)5Du exp

�
2
t2Dt

P

t
L

�
1 u

w
. (4)

This function is fit to each observed drydown using

nonlinear least squares fitting, to estimate tL (McColl

et al. 2017b; Rondinelli et al. 2015; Shellito et al. 2018,

2016). Here, Du is the drydown amplitude, uw is a min-

imum soil moisture value for the given location, and

t5DtP at the start of an individual drydown. The pa-

rameter uw is constrained to be lower than the lowest soil

moisture value observed during the drydown. In cases

where the fitted curve had a coefficient of determination

R2 less than 0.7, the drydown was discarded from the

analysis. If fewer than three drydowns were identified in

a given location, the grid cell was masked out.

This approach assumes that the resolved component

of the drydown (for Dt5 3 days) lies entirely within the

stage-II ET regime; while this is not strictly true in all

cases, McColl et al. (2017b) showed that it is a rea-

sonable assumption based on model experiments. A

desirable property of this estimation procedure is that

it automatically restricts the analysis to regions where

ET is sensitive to soil moisture, since these are the only

JUNE 2019 MCCOLL ET AL . 1169



regions in which drydowns [of the form given in

Eq. (4)] will be visible in the soil moisture time se-

ries. In regions where ET is relatively insensitive to

soil moisture, soil moisture–precipitation feedbacks

cannot occur.

An alternative approach to estimating tL would be

to fit a linear relation between u(t) and du(t)/dt, re-

stricted to cases in which P5 0. However, in this

case, comparable errors are present in both the inde-

pendent and dependent variables [u(t) and du(t)/dt,

respectively], in violation of standard ordinary least

squares assumptions. Instead, more sophisticated

regression procedures could be used (e.g., errors-in-

variables approaches), but these methods require in-

formation on the error structures of u(t) and du(t)/dt.

Instead, by regressing u(t) on the error-free independent

variable t, rather than regressing du(t)/dt on u(t), we

avoid this problem, but at the cost of amore complicated

nonlinear fitting procedure.

b. Estimation of short-term memory tS

In this section, we describe the estimation pro-

cedure for tS. Rather than performing a linear re-

gression in [u(t), du(t)/dt] space, restricted to cases

where P. 0, we adopt a similar approach to the pre-

vious section, in which a nonlinear drydown model is

fit in [t, u(t)] space. However, since the beginning of

the drydown is typically not resolved by the observa-

tions for Dt5 3 days (Fig. 2b), we require additional

assumptions compared to the procedure for estimat-

ing tL. The three additional assumptions relate to the

unobserved initial condition for the drydown:

R1: The precipitation event that precedes the dry-

down, which is not resolved by the soil moisture

time series, is assumed to occur randomly between

the two soil moisture observations comprising the

positive increment. That is, for a positive increment

Du1(t)5 u(t)2 u(t2Dt). 0, the timing of the pre-

cipitation event causing the positive increment is

assumed to be uniformly distributed on the in-

terval [t2Dt, t]. This assumption is reasonable

given the sampling frequency of the soil moisture

observations is uncorrelated with precipitation.

R2: The soil moisture value at the unobserved start

of the drydown is, on average, assumed to be

u(t2Dt)1a/Dz, where a is mean event precipita-

tion. Implicitly, this assumes that, at large scales,

positive increments in the soil moisture time series

are always caused by precipitation. This assump-

tion will be violated in some regions where irriga-

tion, capillary rise and/or run-on are substantial;

but at large scales, relatively few grid points

are expected to be influenced by these effects

substantially.

R3: The mean soil moisture u is a reasonable approx-

imation of the mean soil moisture value immedi-

ately prior to a precipitation event u(t2Dt). This
assumption was tested in a suite of synthetic exper-

iments (appendix B) and was found to be reason-

able (not shown).

Combining assumptions R1–R3 with the hybrid model

[Eq. (3), focusing on the P(t). 0 case] gives an explicit

expression for the short-term memory:

t
S
52

Dt

2

log

 
DzDu

1

a

!52

Dt

2
log(F

P
)
, (5)

where FP is the ‘‘stored precipitation fraction’’ in-

troduced in McColl et al. (2017a). A full derivation of

this relation is provided in appendix A.

The procedures described here for estimating tS
and tL are not the only possible approaches. Several

techniques exist for directly estimating the loss function

L(s) using soil moisture observations. Since tL and tS
are inverse slopes of the loss function in the stage-II ET

regime, and a combination of the unresolved stage-I

ET and drainage regimes, respectively, these techniques

provide implicit estimates of tL and tS. Salvucci (2001)

showed that the loss function, evaluated at a particular

soil moisture value, is equivalent to the mean precipi-

tation conditioned on that soil moisture value. Observed

precipitation time series can, therefore, be combined

with observed soil moisture time series to estimate the

loss function (Saleem and Salvucci 2002; Salvucci 2001;

Tuttle and Salvucci 2014). Koster et al. (2017) proposed

an alternative approach in which the loss function is

calibrated piecewise based on a water balance forced

with observed precipitation and soil moisture time

series. In contrast, Akbar et al. (2018a) estimated the

loss function based on negative increments in the soil

moisture time series, without using precipitation ob-

servations. The techniques we propose for estimating

tS and tL require observed soil moisture time series,

and mean event precipitation (but not precipitation

time series). Our approach lies somewhere between

those of Salvucci (2001) and Koster et al. (2017)—which

require observed precipitation time series that might

be more error-prone than mean event precipitation,

but make fewer assumptions about the shape of the

loss function—and Akbar et al. (2018a) which requires

no precipitation observations, but may be less accurate

in estimating tS.

1170 JOURNAL OF HYDROMETEOROLOGY VOLUME 20



A major advantage of our memory estimates is

that they are not dependent on a reference value.

Autocorrelation-based metrics are defined with re-

spect to a reference state, which can be an annual

mean, time-varying trend, or other value. For exam-

ple, previous studies that estimated memory based on

autocorrelation-based metrics often limited their an-

alyses to the Northern Hemisphere summer [June–

August (JJA)], using JJA mean soil moisture as the

reference value (e.g., Dirmeyer et al. 2016; Koster and

Suarez 2001; Seneviratne et al. 2006). Unfortunately,

this severely complicates comparisons with, for ex-

ample, regions in the Southern Hemisphere (for which

JJA is winter). The seasonal cycle also leaks into the

estimated memory time scale, often increasing it

substantially (Koster and Suarez 2001; Seneviratne

and Koster 2012). In contrast, since our estimates of

tS and tL are based on localized features of the soil

moisture time series (positive increments for tS, and

drydowns for tL) and are not dependent on fixed ref-

erence values, we are able to make concurrent, global

estimates of surface soil moisture (SSM) memory time

scales using a single estimation procedure. Both short-

and long-term memory estimates are also largely in-

sensitive to the seasonal cycle (appendix B, Fig. B1).

A second major advantage of our approach is that it

does not mix two different time scales. Autocorrelation-

based metrics assume a red noise model [i.e., a noisy,

linear relation between L(s) and s]; but fitting such a

model to, for instance, the example case in Fig. 1a,

would result in an estimated time scale (proportional

to the inverse slope) that is a mixture of tL and tS. This

is particularly significant since, as we will show, tL
and tS are spatially anticorrelated at global scales.

Therefore, an autocorrelation-based memory time

scale is often a mixture of relatively high tL and rel-

atively low tS, or vice versa, resulting in a spatial

distribution that is substantially different to those of

both tL and tS. Spatial gradients apparent in tL and tS
are smoothed out by this mixing, resulting in a more

uniform spatial field for standard autocorrelation-

based time scales.

c. SMAP soil moisture data

We use surface soil moisture observations from

NASA’s Soil Moisture Active Passive (SMAP) mis-

sion. Launched in January 2015, SMAP measures

surface soil moisture (i.e., moisture in the top ;5 cm

of soil) globally using a passive L-band radiometer

(Entekhabi et al. 2010) at 36 km spatial resolution. We

use two years of morning overpass, version 4 SMAP

passive soil moisture retrievals, spanning 1 April 2015–

31 March 2017 (O’Neill et al. 2018). We use morning

observations because the assumption of equal surface

and air temperatures that is made in the SMAP re-

trieval algorithm is more likely to be satisfied early in

the morning. This appears to be a sufficiently large

sample size to characterize annual average properties

relevant to soil moisture memory.

Validation studies demonstrate that SMAP is meeting

its performance target (Chan et al. 2016; Colliander

et al. 2017), and has the highest global accuracy

(measured by its correlation coefficient) when com-

pared with two other soil moisture satellites (Chen

et al. 2018). The data were filtered to limit the effects

of potential error sources—such as radio frequency

interference (RFI), the presence of small water bod-

ies, dense vegetation (tropical and boreal forests

where the estimated vegetation water content exceeds

5 kgm22), and frozen landscapes—as described in a

previous study (McColl et al. 2017b). While SMAP’s

sampling frequency is nominally once every 3 days, it

deviates from this in some locations due to the satel-

lite’s orbital geometry. Filtering also reduces the

number of satellite observations available in some

locations, which reduces the ‘‘effective sampling fre-

quency,’’ that is, the ratio of the total number of ob-

servations available to the number of days in the study

period. In most regions, there are at least 100 obser-

vations available after filtering (see Fig. S9 of McColl

et al. 2017b). Estimates of tS and tL are both partially

dependent on the sampling frequency of the obser-

vations (McColl et al. 2017a,b). Spatially coherent

patterns in sampling frequency of the observations

can, therefore, lead to spatially coherent patterns in

maps of tS and tL, which can be misinterpreted as

physical signals rather than observational artifacts. To

mitigate the effects of this problem, we undersample

the SMAP observations (i.e., discard observations) in

regions where the sampling frequency is greater than

once every 3 days to obtain an effective sampling

frequency close to the nominal SMAP value.

SMAP (like all soil moisture satellites at time of

writing) measures SSM rather than root-zone soil

moisture (RZSM), which is often the more important

control on processes such as ET. However, in many

cases, SSM is well correlated with RZSM (Akbar et al.

2018b; Ford et al. 2014), meaning SSM can be re-

garded as a reliable proxy of RZSM under many (al-

though not all) conditions.

d. GPM precipitation data

Precipitation observations are obtained from theNASA

Global PrecipitationMission (GPM) at 0.18 resolution, for
the same 2-yr period as the SMAP observations. Due to its

orbit, GPM provides observations at latitudes between
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608S and 608N. The specific products used are the

half-hourly Final-Run (Huffman 2017) and Late-

Run Integrated Multi-Satellite Retrievals for GPM

(IMERG) products. The observations are regridded

to SMAP’s EASE 2.0 grid and filtered to exclude re-

gions in which total precipitation is zero.

e. GEOS-5 Catchment land surface model

In addition to estimating tS and tL from observa-

tions, we also estimate these parameters using an

offline land surface model. We use the ‘‘Nature Run

version 4’’ simulation performed by Reichle et al.

(2017a) using the Goddard Earth Observing System

Model, version 5 (GEOS-5), Catchment land surface

model, which has a native resolution of 9km (Ducharne

et al. 2000; Koster et al. 2000). An advantage of this

model is that it has an explicit top 5 cm surface soil

moisture layer, which matches the nominal SMAP

sensing depth. Full details of the model run can be

found in Reichle et al. (2017a).

We use both Nature Run surface soil moisture (top

0–5 cm) and root-zone soil moisture (top 0–100 cm) to

estimate both tS and tL globally. The SMAP mea-

surement depth is nominally top 0–5 cm and is vali-

dated against in situ observations at this depth. However,

the actual SMAP measurement depth varies with soil

moisture content and other variables. Therefore, to

allow a fair comparison with the model, we compare

SMAP observations to both SSM and RZSM model

outputs.

The data are filtered consistent with the SMAP ob-

servations. Furthermore, to isolate the impact of soil

moisture observations on our comparison between

models and observations, we use GPM precipitation to

estimate tS from the Nature Run using Eq. (5) rather

than the precipitation used as forcing in the Nature

Run. If we did not do this, differences between mo-

del and satellite estimates of tS could, in theory, be

due to differences in precipitation forcing. Reichle

et al. (2017b) compared the gauge-corrected precipi-

tation forcing used in the Nature Run to a combina-

tion of GPM and Tropical Rainfall MeasuringMission

(TRMM) precipitation observations. They found that,

while there were important differences in the diurnal

FIG. 3. Global map of short-term memory tS (days) estimated from (a) satellite observations

and (b) model SSM.
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cycle phase between the products, the diurnal ampli-

tudes were largely similar, albeit with exceptions in

areas with few gauge observations. Since we only re-

quire an estimate of the event-mean precipitation

rate, the GPM and Nature Run precipitation forcing

are comparable for our purposes.

3. Results and discussion

In this section, we present estimates of tS and tL from

SMAP satellite observations and compare with those

obtained using model SSM and RZSM; and assess the

spatial relation between tS and tL in the model and

satellite observations.

a. Comparison between model and satellite
observations

The land surface model systematically underestimates

SSM tS in most parts of the world relative to satellite

observations (Fig. 3). However, the model is more suc-

cessful in capturing spatial patterns in SSM tS: after a

linear rescaling to remove additive and multiplicative

biases, it explains 51% of the observed spatial variance

(Fig. 4c). In particular, there is a bimodal spatial

structure over North America, with larger values in

the west compared to the east. This pattern is similar

to that observed in McColl et al. (2017a), who used

SMAP observations to plot FP [recall that tS is a

monotonic increasing function of FP; see Eq. (5)]. It is

particularly noteworthy because of its relation to the

work of Tuttle and Salvucci (2016), who diagnosed the

sign of feedbacks between SSM and next-day pre-

cipitation over the United States. They found a simi-

lar bimodal spatial structure, with positive feedbacks

dominating in the west, and negative feedbacks domi-

nating in the east. Soil moisture memory is a necessary

condition for land–atmosphere feedbacks to occur.

Short-term memory is the relevant time scale for pos-

itive feedbacks between SSM and next-day precipita-

tion. Our results are, therefore, consistent with those of

Tuttle and Salvucci (2016). The underestimation of

tS by the land surface model, relative to satellite

observations, suggests that models might fail to re-

produce the correct rate of occurrence and intensity of

positive SSM–precipitation feedbacks on short time

scales.

The land surface model substantially overestimates

SSM tL in many locations, relative to satellite obser-

vations (Fig. 5). A previous study found the Noah land

surface model also overestimated tL in comparisons

with SMAP observations over the continental United

States (Shellito et al. 2018). A possible contributing

factor to the model overestimation of SSM tL is that

the land surface model parameters have been overly

FIG. 4. Comparisons of modeled and satellite-observed tS and median tL. Shaded areas are

estimated joint empirical distribution functions of the variables listed on the x and y axes.

Dashed lines are 1:1 lines.
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tuned to point-scale in situ measurements, which dry

at a slower rate compared with SMAP observations

(Shellito et al. 2016). The drying dynamics at the point

scale likely differ considerably from those at the scale

of a model grid cell. For example, runoff and sub-

surface lateral fluxes can play a major role in soil

drying at the point scale, but rarely do so at the large

scales (;10–100 km) relevant to models and satellites.

For instance, in a steep valley, one might expect sur-

face runoff to be a major source of drying at the point

scale at higher elevations in the valley. However, if

we average over a larger area, that encloses the val-

ley, then the redistribution of water from upslope to

downslope has minimal impact on the area-averaged

surface soil moisture.

The long-term memory is the relevant time scale for

positive feedbacks between SSM and precipitation at

weekly, monthly, and seasonal time scales. Sufficient

long-term memory is required to sustain feedbacks at

these time scales. Therefore, the overestimation of tL
in the land surface model, relative to satellite obser-

vations, suggests that it might overestimate the occur-

rence rate and intensity of positive SSM–precipitation

feedbacks on longer time scales. Over the northern

United States, to first order, the opposite bimodal

spatial structure is present in satellite observations of

tL compared to that of tS, with tL highest in the east

and lowest in the west (McColl et al. 2017b). Since the

spatial structure is only poorly captured by the model,

even after a linear rescaling (Fig. 4a; R2 5 0:063), the

model may fail to correctly identify regions where

feedbacks occur.

Could ambiguities in the SMAP sensing depth explain

the observed differences between SMAP-estimated and

model-estimated time scales? While the SMAP sensing

depth is nominally 5 cm, in practice it varies with sev-

eral factors including soil moisture itself. Therefore, the

mismatch between model and SMAP estimates could

potentially be due to the satellite measuring a deeper

soil volume compared to themodel, rather than errors in

the model. To test this explanation, we compare SMAP-

estimated tL and tS to model RZSM-estimated tL
(Fig. 6) and tS (Fig. 7). If the impact of SMAPmeasuring

deeper than 5 cm is significantly impacting the estimated

memory time scales, we would expect a better corre-

spondence between SMAP estimates and model RZSM

FIG. 5. Global map of median long-term memory tL (days) estimated from (a) satellite ob-

servations and (b) model SSM.
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estimates, rather than model SSM estimates. However,

for both tL and tS, the model SSM estimate explains

more of the observed variance compared to the model

RZSM estimate (Fig. 4; 6.3% compared to 3.3% for tL,

and 51% compared to 0.1% for tS). Therefore, differ-

ences between the model and satellite do not appear to

be dominated by ambiguities in the vertical support of

the SMAP observations. It is possible that the SMAP

sensing depth is less than 5 cm, or lies between 5 and

100 cm, but we are unable to test these alternatives given

the lack of model outputs at these depths.

Modeled soil moisture is known to be highly model

dependent (Koster et al. 2009). In particular, the loss

function encoded in models can vary substantially

(Mahfouf et al. 1996). As such, it is unclear howmuch one

can generalize our comparisons of SMAP estimates with

those from one model. However, our comparison is con-

sistent with a recent study (Shellito et al. 2018) that used

a different model, which also showed that SSM tL is

overestimated by the model in most parts of the world,

relative to satellite observations.

b. Joint analysis of tL and tS

Globally, short-term and long-term SSMmemory are

anticorrelated in both the model and satellite obser-

vations. Figure 8 shows the joint empirical probability

density functions for tL and tS, estimated using satellite

observations and model SSM and RZSM. The Spear-

man correlation coefficient between tL and tS glob-

ally, using observed SSM, is r520:48 (Fig. 8a); using

modeled SSM, it is r520:46 (Fig. 8b). Using modeled

RZSM, the anticorrelation disappears (r5 0:051, Fig. 8c).

All three correlations are statistically significant (p, 0.01).

We use the Spearman correlation coefficient rather

than the standard correlation coefficient as the re-

lation between tL and tS appears nonlinear in all three

cases. We conducted sensitivity tests (appendix B)

using synthetic soil moisture observations to determine

FIG. 6. Global map of median long-term memory tL (days) estimated from model RZSM.

FIG. 7. Global map of short-term memory tS (days) estimated from model RZSM.
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if the observed anticorrelation could be an artifact of

measurement error or violations of assumptions in the

estimation procedures for tL and tS. This could poten-

tially occur if estimation errors in tL and tS are of op-

posite sign. Reasonable variations in soil texture, soil

moisture observation error and sampling frequency, and

climate (including potential evapotranspiration, mean

precipitation frequency and intensity, and precipitation

seasonality) did not induce substantial biases in tL and tS
of opposite sign (appendix B, Fig. B1). These results

suggest the observed anticorrelation between SSM tL
and tS is not an artifact caused by measurement errors or

assumptions embedded in the estimation procedure.

Why are tS and tL spatially anticorrelated?We offer

one plausible hypothesis. Consider the effects of a

negative spatial anomaly in potential evapotranspi-

ration for an otherwise fixed climate–vegetation–soil

system. By definition, this anomaly will increase tL
(recall that tL is inversely proportional to the slope

of the loss function in the water-limited stage-II

ET regime, and this slope increases with increasing

potential evapotranspiration). By reducing evapora-

tive losses, it will also produce a positive surface soil

moisture anomaly. Since wetter soils drain more rap-

idly than drier soils, and drainage is an unresolved

process, the anomaly will decrease tS. By a similar

mechanism, a positive spatial anomaly in potential

evapotranspiration will decrease tL and increase tS.

We compared the two memory time scales to relevant

biophysical covariates, including soil texture, median soil

moisture, and land cover type (not shown).While therewas

significant unexplained variance in each comparison, me-

dian soil moisture explained more variance compared to

the other variables tested, consistent with our hypothesis.

The spatial anticorrelation between SSM tS and tL im-

plies that short-term and long-term land–atmosphere

feedbacks will usually occur in different regions. This may

partially explain differences in the estimated spatial distri-

bution of land–atmosphere coupling ‘‘hot spots’’ in previous

studies (e.g., Koster et al. 2006, 2004; Tuttle and Salvucci

2016), although substantial differences likely also arise due

to differences in soil moisture depth, and whether soil

moisture observations or model outputs were used. Since

standard autocorrelationmemory time scalesmix tS and tL,

spatial gradients in tS and tL are smoothed out by auto-

correlation memory time scales (appendix C, Figs. C1, C2)

While our sensitivity analysis (appendix B) found that

estimates of short- and long-term memory are reasonably

robust to uncorrelated noise in the soil moisture observa-

tions, it is possible that other forms of observation error

could bias their estimation. For example, while estimates

of tL are robust to additive andmultiplicative biases in the

observations, estimates of tS are only robust to additive

biases. Sufficiently large multiplicative biases in the soil

moisture time series will lead to overestimation of tS. In

addition, if errors in the soil moisture time series are au-

tocorrelated, they will lead to overestimation of tL. This

can occur due to imperfect corrections for vegetation in

the soil moisture retrieval algorithm, inducing time-

dependent biases that are a function of vegetation

FIG. 8. Joint empirical probability density functions of tS and median tL, estimated from

(a) satellite observations, (b) model SSM, and (c) model RZSM (note the different y-axis scale

and colorbar scale in this case).
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phenology (Dong et al. 2018; Zwieback et al. 2018). We

have limited our analysis to annual median values, but

future studies on the intra-annual variability of tL will

need to overcome this limitation in the satellite obser-

vations. One possible solution is to use a dual-channel

algorithm (e.g., Konings et al. 2016), which retrieves

both soil moisture and vegetation optical depth (VOD),

rather than a single channel algorithm, which only re-

trieves soil moisture and requires VOD as an input,

which for SMAP is based on an NDVI climatology and

subject to substantial errors (Dong et al. 2018).

We have found that annual median SSM short-term and

long-term memory time scales are anticorrelated at global

scales. However, the short observational record means we

are unable to examine temporal variability in memory

time scales. This will become possible as the satellite SSM

observational record grows with time. Characterizing

constraints on SSM–precipitation feedbacks imposed by

the seasonal cycle will be a key future research task.
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APPENDIX A

Derivation of Estimator for tS

In this appendix, the estimator for tS given in Eq. (5) is

derived. The hybrid model of soil moisture memory

[Eq. (3)] shortly after a precipitation event is

du(t)

dt
52

u(t)2 u

t
S

1 «(t) , (A1)

where u is mean soil moisture. Taking the expectation

of both sides, conditioned on u, removes the stochastic

noise term, resulting in

du(t)

dt
52

u(t)2 u

t
S

(A2)

To solve this ordinary differential equation, we require an

initial condition. A precipitation event—marked by a sharp

increase in soil moisture—occurs somewhere in the interval

[t2Dt, t], resulting in a positive increment in the soil

moisture time series over the interval Du1(t)5 u(t)2
u(t2Dt). 0. Define the time of the precipitation event as

t2DtP, with DtP treated as known for now. Therefore, the

initial soil moisture value at the start of the drydown is

u(t2DtP). Integrating both sides ofEq. (A2)with respect to

t over the interval [t2DtP, t] and rearranging yields

u(t)5 u1 [u(t2Dt
P
)2 u] exp

�
2
Dt

P

t
S

�
. (A3)

Taking the mean of Eq. (A3), conditioned on DtP, and
applying assumptions R2 and R3 results in

u(tjDt
P
)5 u(t2Dt)1

a

Dz
exp

�
2
Dt

P

t
S

�
. (A4)

Since, in practice, we do not know DtP, it is treated as a

random variable. To eliminate the conditional depen-

dence on DtP, we apply assumption R1:

u(t)5

ð‘
2‘

u(tjDt
P
)f

DTP
(Dt

P
) dDt

P
5 u(t2Dt)

1
a

Dz

t
S

Dt

�
12 exp

�
2
Dt

t
S

��
, (A5)

where

f
DTP

(Dt
P
)5

1

Dt
, for 0#Dt

P
#Dt ,

0, otherwise.

8><
>: (A6)

Applying the Taylor expansion exp(x)’ 11 x1 x2/21 � � �
to the exponential term on the right-hand side, and limiting

terms to first order, results in the first-order approximation

u(t)’ u(t2Dt)1
a

Dz
exp

�
2

Dt

2t
S

�
. (A7)

Rearranging gives

t
S
52

Dt

2

log

 
DzDu

1

a

! . (A8)

APPENDIX B

Sensitivity Experiments with Synthetic Data

We test our estimation procedures for tS and tL, and

their embedded assumptions, on synthetic soil moisture
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‘‘observations,’’ generated using a stochastic model of

soil moisture. The model is similar to that presented in

Laio et al. (2001) and its key features are described here.

Precipitation event interarrival times are modeled as

independent exponential random variables with mean

1/l. The total precipitation for a given event is also

modeled as an exponential random variable with mean

a. The mean daily precipitation, therefore, is P5al. In

addition, unlike Laio et al. (2001), we include a seasonal

cycle in precipitation represented as

P(t)5P
0
1A

P
sin

�
2pt

12

�
(B1)

similar to the form used in Feng et al. (2014), where t is

the month, P0 is the annually averaged mean daily pre-

cipitation, andAP is the amplitude of the seasonal cycle.

For fixed l, this gives an implicit seasonal cycle in a.

Losses from the soil column L comprise ET and

vertical drainage. Runoff—defined here as horizontal

transport of water over or through the SSM control

volume—is assumed to be negligible at the large

horizontal scales relevant to a satellite footprint or a

model grid cell. Note that runoff excludes baseflow

since the SSM control volume, with a depth of ;5 cm,

rarely intersects the water table. The combined losses

are represented by a loss function similar to that given

in Fig. 1. It includes a linear, stage-II ET regime

{L5 [(s2 sw)/(s*2 sw)]Emax, where s5 u/n is soil satu-

ration, n is soil porosity, sw is the wilting point, and s*
is a critical soil saturation at which the transition from

stage-I to stage-II ET occurs}; a flat, stage-I ET regime

(L5Emax); and a drainage regime represented by a

power law

L5
K

s
fexp[b(s2 s

fc
)]2 1g

exp[b(12 s
fc
)]2 1

,

where sfc is field capacity, Ks is the saturated hydraulic

conductivity, and b is a parameter used to fit the ex-

pression to data.

The model is integrated at a 1-min time step. When

precipitation falls, it falls entirely within a 1-min time

step, a simplification that is unrealistic but sufficient for

the purposes of this sensitivity analysis. For each set of

parameters used in the sensitivity analysis, we run the

stochastic model 30 times, generating 30 replicates of

tS, tL, and T, which are used to estimate 90% confi-

dence intervals in Fig. B1. Parameters are defined in

Tables B1 and B2.

The autocorrelation time scale T is obtained from the

estimated autocorrelation function of the time series,

corresponding to the time lag at which the autocor-

relation function equals e21. Since T is very signifi-

cantly biased by seasonality, we remove the monthly

soil moisture climatology (estimated from the avail-

able synthetic observations for the given sensitivity

experiment) before estimating T. The results do not

change qualitatively if a 30-day moving window av-

erage is subtracted instead. We do not remove the

seasonal cycle when estimating tS and tL, since they

are designed to be insensitive to the seasonal cycle

(a significant advantage over T).

TABLE B1. Default parameters used in the synthetic model

sensitivity study.

Parameter Default value

Soil texture Loam

Potential evapotranspiration Emax 1 3 1023 m day21

Sample size N 2 years

Sampling frequency 1/Dt 1/3 day21

Standard deviation of observation

noise error s

0

Mean daily precipitation P 3 3 1023 m day21

Mean precipitation event interarrival

time 1/l

3 days

Amplitude of seasonal cycle of mean

daily precipitation AP

3 3 1023 m day21

FIG. B1. Sensitivity analysis of estimated time scales (a) tS and

(b) median tL, and T, based on synthetic soil moisture time series,

for which the true value is known. The synthetic soil moisture time

series were generated using a model with prescribed loss function,

and forced with stochastic precipitation. Parameters are defined

in Tables B1 and B2. For each set of parameters used in the sen-

sitivity analysis, we ran the stochastic model 30 times, generating

30 replicates of tS, tL, and T, which were used to estimate 90%

confidence intervals.
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The e-folding autocorrelation time scale T consis-

tently underestimates the true long-term memory

(Fig. B1). This is due to detrending: in an attempt to

remove seasonality from the soil moisture time series

(which would otherwise dominate the estimate of T

and cause it to be substantially positively biased), the

time series is overcorrected. Some variability relevant

to the short-term memory is removed, resulting in

the underestimate. This problem is fundamentally due

to the inapplicability of the red noise model at sub-

monthly time scales.

Estimates of tL and tS are reasonable for a variety of

loss functions (corresponding to variations in soil tex-

ture andEmax), sample sizesN and precipitation regimes

(varying l, P, and AP), although tL is overestimated for

high l. In this case, precipitation occurs frequently but

at low intensity. These climates do not typically sup-

port major soil moisture–precipitation feedbacks,

because the precipitation variability signal is too low.

These regions are automatically filtered out of our

analyses by excluding regions where very few dry-

downs are identified.

Errors in soil moisture observations can bias or reduce

the precision of estimates of tS and tL. Figure B1 shows

the sensitivity of estimates of tS and tL to observation

error. Here, observation errors are assumed to be ad-

ditive, Gaussian and independent in time. The standard

deviation of the error term is varied between zero (base

case), 0.02, and 0.04. The highest error case corresponds

to an extreme case in which the nominal estimated

FIG. C1. Global map of T (days) estimated from (a) satellite observations and (b) model SSM.

TABLE B2. Soil texture parameters used in synthetic sensitivity study, based on Laio et al. (2001).

Soil texture

Saturated hydraulic

conductivity Ks (m day21) Porosity n

Drainage loss

parameter b Wilting point sw

Critical soil

saturation s*

Field

capacity sfc

Sand 2 0.35 12.1 0.11 0.33 0.35

Loamy sand 1 0.42 12.7 0.11 0.31 0.52

Sandy loam 0.8 0.43 13.8 0.18 0.46 0.56

Loam 0.2 0.45 14.8 0.24 0.57 0.65

Clay 0.1 0.5 26.8 0.52 0.78 0.99
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SMAP observation error is contributed entirely by noise,

with no contribution from biases. The addition of obser-

vation noise decreases the precision of estimates of both tS
and tL, particularly for tL. It also introduces positive biases

into estimates of both tS and tL. McColl et al. (2017a)

provide an error analysis showing that FP is positively bi-

ased in the presence of noise, consistent with these results.

However, the biases in tS and tL are relatively small. Even

in the most extreme case (Fig. B1, s5 0:04), the median

estimated tL is closer to the true value than T, which de-

creases with increasing observation error.

The sampling frequency of the observations impacts

estimates of tS and tL. As the sampling frequency de-

creases (i.e., Dt gets larger), the parameterized time scale

tS gets longer. For small Dt, only drainage losses are pa-

rameterized; since these losses are relatively rapid, tS is

relatively small. For larger Dt, a combination of drainage

losses andET losses are parameterized; sinceET losses are

relatively slower, tS is relatively larger in this case. Esti-

mates of tS are reasonable at relatively high sampling

frequencies, including the SMAP sampling frequency

(Dt5 3 days). Long-term memory tL does not vary

with sampling frequency, since it is resolved by the

observations in all cases, rather than parameterized. T

systematically underestimates the long-term memory,

and increases slightly with increasing Dt. On the other

hand, estimates of tL agree reasonably with the true

value, particularly for the default case corresponding to

the SMAP sampling frequency (Dt5 3 days).

APPENDIX C

Mixing of Memory Time Scales by Traditional
Memory Metrics

Figures C1 and C2 show the e-folding autocorrelation

time scale T, estimated using satellite observations, and

model SSM and RZSM. Comparison of Fig. C1 with

Figs. 3 and 5 (which show equivalent maps of SSM tS
and tL, respectively) reveals that, in most parts of the

world, values of T are typically less than tL and greater

than tS. This is also true for model RZSM T (cf. Fig. C2

with Figs. 6 and 7). These results are consistent with the

idea thatTmixes the two distinct time scales tL and tS in

both the model and the observations.
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